Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R={(a,b) : Ia-bI is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of 2, 4}.
A = {1, 2, 3, 4, 5}
R={(a,b) : Ia-bI is even}
It is clear that for any element a ∈A, we have Ia-aI = 0 (which is even).
∴R is reflexive.
Let (a, b) ∈ R.
\(\Rightarrow\) Ia-bI is even.
\(\Rightarrow\) I-(a-b)I=Ib-aI is also even.
\(\Rightarrow\) (b,a)∈R
∴R is symmetric.
Now, let (a, b) ∈ R and (b, c) ∈ R.
\(\Rightarrow\) Ia-bI is even and Ib-cI is even.
(a-b)is even and (b-c) is even.
\(\Rightarrow\) (a-c)=(a-b)+(b-c) is even. (sum of two integers is even)
\(\Rightarrow\) Ia-cI is even.
⇒ (a, c) ∈ R
∴R is transitive.
Hence, R is an equivalence relation.
Now, all elements of the set {1, 2, 3} are related to each other as all the elements of
this subset are odd. Thus, the modulus of the difference between any two elements will
be even.
Similarly, all elements of the set {2, 4} are related to each other as all the elements of
this subset are even.
Also, no element of the subset {1, 3, 5} can be related to any element of {2, 4} as all
elements of {1, 3, 5} are odd and all elements of {2, 4} are even. Thus, the modulus of
the difference between the two elements (from each of these two subsets) will not be
even.
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.
A relation R in a set, say A is a universal relation if each element of A is related to every element of A.
R = A × A.
Every element of set A is related to itself only then the relation is identity relation.
Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1
If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.
A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.
A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A
A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.