Show that the relation R in the set A = {1, 2, 3, 4, 5} given by R={(a,b) : Ia-bI is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of 2, 4}.
A = {1, 2, 3, 4, 5}
R={(a,b) : Ia-bI is even}
It is clear that for any element a ∈A, we have Ia-aI = 0 (which is even).
∴R is reflexive.
Let (a, b) ∈ R.
\(\Rightarrow\) Ia-bI is even.
\(\Rightarrow\) I-(a-b)I=Ib-aI is also even.
\(\Rightarrow\) (b,a)∈R
∴R is symmetric.
Now, let (a, b) ∈ R and (b, c) ∈ R.
\(\Rightarrow\) Ia-bI is even and Ib-cI is even.
(a-b)is even and (b-c) is even.
\(\Rightarrow\) (a-c)=(a-b)+(b-c) is even. (sum of two integers is even)
\(\Rightarrow\) Ia-cI is even.
⇒ (a, c) ∈ R
∴R is transitive.
Hence, R is an equivalence relation.
Now, all elements of the set {1, 2, 3} are related to each other as all the elements of
this subset are odd. Thus, the modulus of the difference between any two elements will
be even.
Similarly, all elements of the set {2, 4} are related to each other as all the elements of
this subset are even.
Also, no element of the subset {1, 3, 5} can be related to any element of {2, 4} as all
elements of {1, 3, 5} are odd and all elements of {2, 4} are even. Thus, the modulus of
the difference between the two elements (from each of these two subsets) will not be
even.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
During the festival season, a mela was organized by the Resident Welfare Association at a park near the society. The main attraction of the mela was a huge swing, which traced the path of a parabola given by the equation:\[ x^2 = y \quad \text{or} \quad f(x) = x^2 \]
Three students, Neha, Rani, and Sam go to a market to purchase stationery items. Neha buys 4 pens, 3 notepads, and 2 erasers and pays ₹ 60. Rani buys 2 pens, 4 notepads, and 6 erasers for ₹ 90. Sam pays ₹ 70 for 6 pens, 2 notepads, and 3 erasers.
Based upon the above information, answer the following questions:
(i) Form the equations required to solve the problem of finding the price of each item, and express it in the matrix form \( A \mathbf{X} = B \).
Simar, Tanvi, and Umara were partners in a firm sharing profits and losses in the ratio of 5 : 6 : 9. On 31st March, 2024, their Balance Sheet was as follows:
Liabilities | Amount (₹) | Assets | Amount (₹) |
Capitals: | Fixed Assets | 25,00,000 | |
Simar | 13,00,000 | Stock | 10,00,000 |
Tanvi | 12,00,000 | Debtors | 8,00,000 |
Umara | 14,00,000 | Cash | 7,00,000 |
General Reserve | 7,00,000 | Profit and Loss A/c | 2,00,000 |
Trade Payables | 6,00,000 | ||
Total | 52,00,000 | Total | 52,00,000 |
Umara died on 30th June, 2024. The partnership deed provided for the following on the death of a partner:
A coil of 60 turns and area \( 1.5 \times 10^{-3} \, \text{m}^2 \) carrying a current of 2 A lies in a vertical plane. It experiences a torque of 0.12 Nm when placed in a uniform horizontal magnetic field. The torque acting on the coil changes to 0.05 Nm after the coil is rotated about its diameter by 90°. Find the magnitude of the magnetic field.
The sequence of nitrogenous bases in a segment of a coding strand of DNA is
5' – AATGCTAGGCAC – 3'. Choose the option that shows the correct sequence of nitrogenous bases in the mRNA transcribed by the DNA.
Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.
A relation R in a set, say A is a universal relation if each element of A is related to every element of A.
R = A × A.
Every element of set A is related to itself only then the relation is identity relation.
Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1
If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.
A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.
A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A
A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.