We suppose that A is a symmetric matrix, then A'=A… (1)
Consider
(B'AB)'={B'(AB)}'
=(AB)'(B')' [(AB)' =B'A']
=B'A'(B) [(B')'=B]
=B'(A'B)
=B'(AB)
therefore (B'AB)'=B'AB
Thus, if A is a symmetric matrix, then B'AB is a symmetric matrix.
Now, we suppose that A is a skew-symmetric matrix.
Then, A'=-A
Consider (B'AB)'=[B'(AB)]'=(AB)'(B')'
=(B'A')B=B'(-A)B =-B'AB
therefore (B'AB)'=-B'AB
Thus, if A is a skew-symmetric matrix, then B'AB is a skew-symmetric matrix. Hence, if A is a symmetric or skew-symmetric matrix, then B'AB is a symmetric or skew symmetric matrix accordingly.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]