We suppose that A is a symmetric matrix, then A'=A… (1)
Consider
(B'AB)'={B'(AB)}'
=(AB)'(B')' [(AB)' =B'A']
=B'A'(B) [(B')'=B]
=B'(A'B)
=B'(AB)
therefore (B'AB)'=B'AB
Thus, if A is a symmetric matrix, then B'AB is a symmetric matrix.
Now, we suppose that A is a skew-symmetric matrix.
Then, A'=-A
Consider (B'AB)'=[B'(AB)]'=(AB)'(B')'
=(B'A')B=B'(-A)B =-B'AB
therefore (B'AB)'=-B'AB
Thus, if A is a skew-symmetric matrix, then B'AB is a skew-symmetric matrix. Hence, if A is a symmetric or skew-symmetric matrix, then B'AB is a symmetric or skew symmetric matrix accordingly.
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)