The correct answer is
\(\frac{2R}{\sqrt3}.\)A sphere of fixed radius
\((R)\) is given. Let
\(r\) and
\(h\) be the radius and the height of the cylinder respectively.

From the given figure, we have
\(h=2\sqrt{R^2-r^2}.\)The volume
\((V)\) of the cylinder is given by,
\(V=πr^2h=2πr^2\sqrt{R^2-r^2}\)\(∴\frac{dV}{dr}=4πr\sqrt{R^2-r^2}+\frac{2πr^2(-2r)}{2\sqrt{R^2-r^2}}\)\(=\frac{4πr(R^2-r^2)-2πr^3}{\sqrt{R^2-r^2}}\)\(=\frac{4πrR^2-6πr^3}{\sqrt{R^2-r^2}}\)Now,
\(\frac{dV}{dr}=0\)\(⇒4πrR^2-6πr^3=0\)\(⇒r^2=\frac{2R^2}{3}\)Now
\(\frac{\frac{d^2V}{dr^2}=\sqrt{R^2-r^2}(4πR^2-18πr^2)-(4πR^2-6πr^3)-\frac{(-2r)}{2\sqrt{R^2-r^2}}}{(r^2-R^2)}\)\(=\frac{4πR^4-22πr^2R^2+12πr^4+4πr^2R^2}{(R^2-r^2)^\frac{3}{2}}\)Now, it can be observed that at
\(r^2=\frac{2R^2}{3},\frac{d^2V}{dr^2}<0\)∴The volume is the maximum when
\(r^2=\frac{2R^2}{3}\)When
\(r^2=\frac{2R^2}{3}\) , the height of the cylinder is
\(2\sqrt{R^2-\frac{2R^2}{3}}\)\(=2\sqrt{\frac{R^2}{3}}=\frac{2R}{\sqrt3}.\)Hence, the volume of the cylinder is the maximum when the height of the cylinder is
\(\frac{2R}{\sqrt3}.\)