(i) an = 3 + 4n
a1 = 3 + 4(1) = 7
a2 = 3 + 4(2) = 3 + 8 = 11
a3 = 3 + 4(3) = 3 + 12 = 15
a4 = 3 + 4(4) = 3 + 16 = 19
It can be observed that
a2 − a1 = 11 − 7 = 4
a3 − a2 = 15 − 11 = 4
a4 − a3 = 19 − 15 = 4
i.e., ak+1 − ak is same every time. Therefore, this is an AP with common difference as 4 and first term as 7.
\(S_n = \frac n2 [2a + (n-1)d]\)
\(S_{15} = \frac {15}{2 }[2(7) + (15-1)4]\)
\(S_{15} = \frac {15}{2} [14 + 56]\)
\(S_{15 }= \frac {15}{2} (70)\)
\(S_{15} = 15 × 35\)
\(S_{15} = 525\)
(ii) an = 9 − 5n
a1 = 9 − 5 × 1 = 9 − 5 = 4
a2 = 9 − 5 × 2 = 9 − 10 = −1
a3 = 9 − 5 × 3 = 9 − 15 = −6
a4 = 9 − 5 × 4 = 9 − 20 = −11
It can be observed that
a2 − a1 = − 1 − 4 = −5
a3 − a2 = − 6 − (−1) = −5
a4 − a3 = − 11 − (−6) = −5
i.e., ak+1 − ak is same every time. Therefore, this is an A.P. with common difference as −5 and first term as 4.
\(S_n = \frac n2 [2a + (n-1)d]\)
\(S_{15 }= \frac {15}{2} [2(4) + (15-1)(-5)]\)
\(S_{15 }= \frac {15}{2} [8 + 14(-5)]\)
\(S_{15 }= \frac {15}{2} [8 - 70]\)
\(S_{15 }= \frac {15}{2} (-62)\)
\(S_{15} = 15 (-31)\)
\(S_{15 }= -465\)
सड़क सुरक्षा के प्रति जागरूकता हेतु ट्रैफिक पुलिस की ओर से जनहित में जारी एक आकर्षक विज्ञापन लगभग 100 शब्दों में तैयार कीजिए।
The following data shows the number of family members living in different bungalows of a locality:
| Number of Members | 0−2 | 2−4 | 4−6 | 6−8 | 8−10 | Total |
|---|---|---|---|---|---|---|
| Number of Bungalows | 10 | p | 60 | q | 5 | 120 |
If the median number of members is found to be 5, find the values of p and q.