Let \( y = \sech^{-1}(\sin \alpha) \).
By definition,
\[
\sech(y) = \sin \alpha
\]
\[
\frac{1}{\cosh y} = \sin \alpha
\]
\[
\cosh y = \frac{1}{\sin \alpha}
\]
Recall that \(\cosh y = \frac{e^y + e^{-y}}{2}\):
\[
\frac{e^y + e^{-y}}{2} = \frac{1}{\sin \alpha}
\]
\[
e^y + e^{-y} = \frac{2}{\sin \alpha}
\]
Let \( z = e^y \):
\[
z + \frac{1}{z} = \frac{2}{\sin \alpha}
\]
\[
z^2 - \frac{2}{\sin \alpha}z + 1 = 0
\]
Solving this quadratic in \(z\):
\[
z = \frac{\frac{2}{\sin \alpha} \pm \sqrt{\left(\frac{2}{\sin \alpha}\right)^2 - 4}}{2}
\]
\[
= \frac{1}{\sin \alpha} \pm \frac{\sqrt{1 - \sin^2 \alpha}}{\sin \alpha}
\]
\[
= \frac{1}{\sin \alpha} \pm \frac{\cos \alpha}{\sin \alpha}
\]
\[
= \csc \alpha \pm \cot \alpha
\]
Since \(y>0\), take the positive root:
\[
e^y = \csc \alpha + \cot \alpha
\]
\[
y = \log(\csc \alpha + \cot \alpha)
\]