Step 1: Expand the given expression:
We are given the expression \( (\sec \theta + \tan \theta)(1 - \sin \theta) \), and we are tasked with simplifying it.
To simplify this, we can expand the product using the distributive property (also known as the FOIL method for binomials):
\[
(\sec \theta + \tan \theta)(1 - \sin \theta) = \sec \theta (1 - \sin \theta) + \tan \theta (1 - \sin \theta)
\]
Step 2: Simplify each term separately:
First, simplify \( \sec \theta (1 - \sin \theta) \):
\[
\sec \theta (1 - \sin \theta) = \sec \theta - \sec \theta \sin \theta
\]
Next, simplify \( \tan \theta (1 - \sin \theta) \):
\[
\tan \theta (1 - \sin \theta) = \tan \theta - \tan \theta \sin \theta
\]
Now, the expression becomes:
\[
\sec \theta - \sec \theta \sin \theta + \tan \theta - \tan \theta \sin \theta
\]
Step 3: Use trigonometric identities to further simplify:
We know the following trigonometric identities:
- \( \sec \theta = \frac{1}{\cos \theta} \)
- \( \tan \theta = \frac{\sin \theta}{\cos \theta} \)
Substitute these identities into the expression:
\[
\frac{1}{\cos \theta} - \frac{1}{\cos \theta} \sin \theta + \frac{\sin \theta}{\cos \theta} - \frac{\sin \theta}{\cos \theta} \sin \theta
\]
Step 4: Combine like terms:
The expression simplifies to:
\[
\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta} - \frac{\sin \theta}{\cos \theta} - \frac{\sin^2 \theta}{\cos \theta}
\]
Notice that the terms \( \frac{\sin \theta}{\cos \theta} \) cancel each other out, leaving us with:
\[
\frac{1}{\cos \theta} - \frac{\sin^2 \theta}{\cos \theta}
\]
Factor out \( \frac{1}{\cos \theta} \):
\[
\frac{1}{\cos \theta} \left( 1 - \sin^2 \theta \right)
\]
Step 5: Use the Pythagorean identity:
We know that \( 1 - \sin^2 \theta = \cos^2 \theta \). Therefore, the expression becomes:
\[
\frac{1}{\cos \theta} \times \cos^2 \theta = \cos \theta
\]
Step 6: Conclusion:
The simplified expression is \( \boxed{\cos \theta} \).