Step 1: Expressing the given expression:
We are asked to simplify the expression \((\sec \theta + \tan \theta)(1 - \sin \theta)\).
We will use trigonometric identities to simplify the given expression.
Step 2: Expanding the expression:
We can start by expanding the given expression:
\[
(\sec \theta + \tan \theta)(1 - \sin \theta) = \sec \theta (1 - \sin \theta) + \tan \theta (1 - \sin \theta)
\]
Now, let's simplify each term.
Step 3: Simplifying the first term:
For \(\sec \theta (1 - \sin \theta)\), we can write \(\sec \theta = \frac{1}{\cos \theta}\), so:
\[
\sec \theta (1 - \sin \theta) = \frac{1}{\cos \theta} (1 - \sin \theta)
\]
This becomes:
\[
\frac{1 - \sin \theta}{\cos \theta}
\]
Step 4: Simplifying the second term:
For \(\tan \theta (1 - \sin \theta)\), we can write \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), so:
\[
\tan \theta (1 - \sin \theta) = \frac{\sin \theta}{\cos \theta} (1 - \sin \theta)
\]
This becomes:
\[
\frac{\sin \theta (1 - \sin \theta)}{\cos \theta}
\]
Step 5: Combining the two terms:
Now, we can combine both terms:
\[
\frac{1 - \sin \theta}{\cos \theta} + \frac{\sin \theta (1 - \sin \theta)}{\cos \theta}
\]
Since both terms have a common denominator of \(\cos \theta\), we can combine them into a single fraction:
\[
\frac{(1 - \sin \theta) + \sin \theta (1 - \sin \theta)}{\cos \theta}
\]
Simplifying the numerator:
\[
(1 - \sin \theta) + \sin \theta (1 - \sin \theta) = 1 - \sin \theta + \sin \theta - \sin^2 \theta
\]
This simplifies to:
\[
1 - \sin^2 \theta
\]
Since \(1 - \sin^2 \theta = \cos^2 \theta\), we now have:
\[
\frac{\cos^2 \theta}{\cos \theta}
\]
Simplifying further:
\[
\cos \theta
\]
Step 6: Conclusion:
The expression \((\sec \theta + \tan \theta)(1 - \sin \theta)\) simplifies to \(\cos \theta\).