Question:

$(\sec \theta + \tan \theta)(1 - \sin \theta)$ is equal to:

Updated On: Dec 12, 2024
  • $\sec \theta$
  • $\sin \theta$
  • $\cosec \theta$
  • $\cos \theta$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Simplify the expression:
\[(\sec \theta + \tan \theta)(1 - \sin \theta)\]
Substitute $\sec \theta = \frac{1}{\cos \theta}$ and $\tan \theta = \frac{\sin \theta}{\cos \theta}$:
\[\frac{1 + \sin \theta}{\cos \theta}(1 - \sin \theta)\]
Simplify further using the identity:
\[\frac{(1 + \sin \theta)(1 - \sin \theta)}{\cos \theta} = \frac{1 - \sin^2 \theta}{\cos \theta}\]
\[= \frac{\cos^2 \theta}{\cos \theta} = \cos \theta\]

Was this answer helpful?
0
0

Notes on Trigonometric Identities