S is the sample space and A, B are two events of a random experiment. Match the items of List A with the items of List B.
Then the correct match is:
Understanding the Matching of Events
Let's analyze each statement from List A and correctly match it with its corresponding expression from List B based on fundamental probability rules.
I. A, B are mutually exclusive events:
Mutually exclusive events cannot occur together, i.e.,
\[
A \cap B = \emptyset
\]
Therefore, the probability of their union is:
\[
P(A \cup B) = P(A) + P(B)
\]
Correct Match: (d) from List B.
II. A, B are independent events:
Independence implies that the occurrence of one does not affect the other. So:
\[
P(A \cap B) = P(A) \cdot P(B)
\]
Correct Match: (c) from List B.
III. \( A \cap B = A \):
This means that event A is completely contained within B (A ⊆ B). Then:
\[
P(A \cup B) = P(B)
\]
Correct Match: (b) from List B.
IV. \( A \cup B = S \):
The union of A and B covers the entire sample space, so:
\[
P(A \cup B) = 1
\]
Correct Match: (a) from List B.
Final Matching:
I → (d), II → (c), III → (b), IV → (a)
Correct Answer:
\[
\boxed{I - d, \quad II - c, \quad III - b, \quad IV - a}
\]
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :