For $0.2 \,M$ solution
$R =50\, \Omega$
$\sigma=1.4 \,S \,m ^{-1}=1.4 \times 10^{-2} S \,cm ^{-1}$
$\Rightarrow \rho=\frac{1}{\sigma}=\frac{1}{1.4 \times 10^{-2}} \Omega \,cm$
Now, $R =\rho \frac{l}{ a }$
$\Rightarrow \frac{l}{ a }=\frac{ R }{\rho}=50 \times 1.4 \times 10^{-2}$
For $0.5$ M solution
$R =280 \,\Omega$
$\sigma=?$
$\frac{l}{ a }=50 \times 1.4 \times 10^{-2}$
$\Rightarrow R =\rho \frac{l}{ a } $
$\Rightarrow \frac{1}{\rho}=\frac{1}{ R } \times \frac{l}{ a } $
$\Rightarrow \sigma=\frac{1}{280} \times 50 \times 1.4 \times 10^{-2} $
$=\frac{1}{280} \times 70 \times 10^{-2}$
$=2.5 \times 10^{-3} \,S \,cm ^{-1} $
Now , $\lambda_{ m }=\frac{\sigma \times 1000}{ M }$
$=\frac{2.5 \times 10^{-3} \times 1000}{0.5} $
$=5\, S \,cm ^{2} \,mol ^{-1} $
$=5 \times 10^{-4} \,S \,m ^{2} \,mol ^{-1}$