Let \( 32^{32} = t \).
Then,
\(64^{32^{32}} = 64^t = 8^{2t} = (9 - 1)^{2t}\)
Expanding using the binomial theorem, we get:
\((9 - 1)^{2t} = 9k + 1,\)
for some integer \( k \).
Thus, the remainder when \( 64^{32^{32}} \) is divided by 9 is 1.
The Correct Answer is: 1
We are given the expression \( 64^{32^{32}} \) and are asked to find the remainder when it is divided by 9.
We start by simplifying \( 64 \mod 9 \): \[ 64 \equiv 1 \, (\text{mod} \, 9) \] This is because: \[ 64 \div 9 = 7 \text{ remainder } 1 \]
Since \( 64 \equiv 1 \, (\text{mod} \, 9) \), we can simplify the expression \( 64^{32^{32}} \mod 9 \) as: \[ 64^{32^{32}} \equiv 1^{32^{32}} \, (\text{mod} \, 9) \] This simplifies further to: \[ 1^{32^{32}} = 1 \]
Therefore, the remainder when \( 64^{32^{32}} \) is divided by 9 is: \[ \boxed{1} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.