
The moment of inertia of a hollow sphere about its diameter axis is given by:
\[ I_{\text{sphere}} = \frac{2}{3} MR^2 = M k_1^2 \]
where \(k_1\) is the radius of gyration of the hollow sphere.
The moment of inertia of a solid cylinder about its diameter axis is:
\[ I_{\text{cylinder}} = \frac{1}{12} M(4R^2) + \frac{1}{4} MR^2 + M(2R)^2 = \frac{67}{12} MR^2 = M k_2^2 \]
Calculating the ratio of the radii of gyration:
\[ \frac{k_1}{k_2} = \sqrt{\frac{\frac{2}{3}}{\frac{67}{12}}} = \sqrt{\frac{8}{67}} \]
Hence, the value of \(x\) is 67.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Two point charges 2q and q are placed at vertex A and centre of face CDEF of the cube as shown in figure. The electric flux passing through the cube is : 
Suppose there is a uniform circular disc of mass M kg and radius r m shown in figure. The shaded regions are cut out from the disc. The moment of inertia of the remainder about the axis A of the disc is given by $\frac{x{256} Mr^2$. The value of x is ___.
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 