To find the radius of the first excited state of the Helium ion (\(He^+\)), we must consider the Bohr model of the atom. According to the Bohr model, the radius of an electron's orbit in a hydrogen-like ion is given by the formula:
\[ r_n = a_0 \frac{n^2}{Z} \]
where \( r_n \) is the radius of the orbit, \( a_0 \) is the Bohr radius, \( n \) is the principal quantum number, and \( Z \) is the atomic number of the ion.
For the first excited state, \( n = 2 \), and for the helium ion (\(He^+\)), \( Z = 2 \). Inserting these values into the formula:
\[ r_2 = a_0 \frac{2^2}{2} = a_0 \frac{4}{2} = 2a_0 \]
Thus, the radius of the first excited state of the helium ion is \( 2a_0 \).
The correct answer is:
\( r = 2a_0 \)
Which of the following Statements are NOT true about the periodic table?
A. The properties of elements are a function of atomic weights.
B. The properties of elements are a function of atomic numbers.
C. Elements having similar outer electronic configuration are arranged in the same period.
D. An element's location reflects the quantum numbers of the last filled orbital.
E. The number of elements in a period is the same as the number of atomic orbitals available in the energy level that is being filled.
Match List-I with List-II:
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: