We know:
\[ r = 0.529 \frac{n^2}{Z} \implies 8.48 = 0.529 \frac{n^2}{1} \]
\[ n^2 = 16 \implies n = 4 \]
We also know:
\[ E \propto \frac{1}{n^2} \]
\[ E_n = \frac{E}{16} \]
Thus, $x = 16$.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.