For a first-order reaction:
\[ t_{1/2} = 120 \, \text{min} \]For 90% completion:
\[ t = \frac{2.303}{k} \log \left( \frac{a}{a - x} \right) \] \[ t = \frac{2.303 \times 120}{0.693} \log \left( \frac{100}{10} \right) \] \[ t = 399 \, \text{min}. \]A(g) $ \rightarrow $ B(g) + C(g) is a first order reaction.
The reaction was started with reactant A only. Which of the following expression is correct for rate constant k ?
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is
For $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}$ $\mathrm{E}_{\mathrm{a}}$ for forward and backward reaction are 180 and $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. If catalyst lowers $\mathrm{E}_{\mathrm{a}}$ for both reaction by $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which of the following statement is correct?
Match List-I with List-II: List-I