Step 1: The effective annual rate \( r_{{eff}} \) for a given nominal rate \( r \) compounded \( n \) times per year is given by: \[ r_{{eff}} = \left(1 + \frac{r}{n}\right)^n - 1. \] where: - \( r = 0.10 \) (10% nominal rate), - \( n \) is the number of compounding periods per year.
Step 2: First, compute for semi-annual compounding (\( n = 2 \)): \[ r_{{eff}} = \left(1 + \frac{0.10}{2}\right)^2 - 1 = (1.05)^2 - 1. \]
Step 3: Compute the value: \[ r_{{eff}} = 1.1025 - 1 = 0.1025 \quad {or} \quad 10.25\%. \]
Step 4: Now, compute for quarterly compounding (\( n = 4 \)): \[ r_{{eff}} = \left(1 + \frac{0.10}{4}\right)^4 - 1 = (1.025)^4 - 1. \]
Step 5: Compute the value: \[ r_{{eff}} = 1.1038 - 1 = 0.1038 \quad {or} \quad 10.38\%. \]
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
In a Linear Programming Problem (LPP), the objective function $Z = 2x + 5y$ is to be maximized under the following constraints:
\[ x + y \leq 4, \quad 3x + 3y \geq 18, \quad x, y \geq 0. \] Study the graph and select the correct option.