n = 4, l = 0, m = 0, s = \(\frac 12\)
n = 4, l = 1, m = 0, s = \(\frac 12\)
n = 3, l = 0, m = 0, s = \(\frac 12\)
n = 4, l = 0, m = 1, s = \(\frac 12\)
The correct option is (A): n = 4, l = 0, m = 0, s = \(\frac 12\).
Given below are two statements:
Statement (I) : The dimensions of Planck’s constant and angular momentum are same.
Statement (II) : In Bohr’s model, electron revolves around the nucleus in those orbits for which angular momentum is an integral multiple of Planck’s constant.
In the light of the above statements, choose the most appropriate answer from the options given below:
Consider a solution of CO$_2$(g) dissolved in water in a closed container. Which one of the following plots correctly represents variation of $\log$ (partial pressure of CO$_2$ in vapour phase above water) [y-axis] with $\log$ (mole fraction of CO$_2$ in water) [x-axis] at
$25^\circ$C? 
Three long straight wires carrying current are arranged mutually parallel as shown in the figure. The force experienced by \(15\) cm length of wire \(Q\) is ________. (\( \mu_0 = 4\pi \times 10^{-7}\,\text{T m A}^{-1} \)) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 
Niels Bohr introduced the atomic Hydrogen model in 1913. He described it as a positively charged nucleus, comprised of protons and neutrons, surrounded by a negatively charged electron cloud. In the model, electrons orbit the nucleus in atomic shells. The atom is held together by electrostatic forces between the positive nucleus and negative surroundings.
Read More: Bohr's Model of Hydrogen Atom
A hydrogen-like atom consists of a tiny positively-charged nucleus and an electron revolving around the nucleus in a stable circular orbit.
If 'e,' 'm,' and 'v' be the charge, mass, and velocity of the electron respectively, 'r' be the radius of the orbit, and Z be the atomic number, the equation for the radii of the permitted orbits is given by r = n2 xr1, where 'n' is the principal quantum number, and r1 is the least allowed radius for a hydrogen atom, known as Bohr's radius having a value of 0.53 Å.
The Bohr Model was an important step in the development of atomic theory. However, it has several limitations.