n = 4, l = 0, m = 0, s = \(\frac 12\)
n = 4, l = 1, m = 0, s = \(\frac 12\)
n = 3, l = 0, m = 0, s = \(\frac 12\)
n = 4, l = 0, m = 1, s = \(\frac 12\)
The correct option is (A): n = 4, l = 0, m = 0, s = \(\frac 12\).
A hydrogen atom consists of an electron revolving in a circular orbit of radius r with certain velocity v around a proton located at the nucleus of the atom. The electrostatic force of attraction between the revolving electron and the proton provides the requisite centripetal force to keep it in the orbit. According to Bohr’s model, an electron can revolve only in certain stable orbits. The angular momentum of the electron in these orbits is some integral multiple of \(\frac{h}{2π}\), where h is the Planck’s constant.
Ion | Q4+ | Xb+ | Yc+ | Zd+ |
---|---|---|---|---|
Radius (pm) | 53 | 66 | 40 | 100 |
Q4+, Xb+, Yc+, Zd+ are respectively
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
Niels Bohr introduced the atomic Hydrogen model in 1913. He described it as a positively charged nucleus, comprised of protons and neutrons, surrounded by a negatively charged electron cloud. In the model, electrons orbit the nucleus in atomic shells. The atom is held together by electrostatic forces between the positive nucleus and negative surroundings.
Read More: Bohr's Model of Hydrogen Atom
A hydrogen-like atom consists of a tiny positively-charged nucleus and an electron revolving around the nucleus in a stable circular orbit.
If 'e,' 'm,' and 'v' be the charge, mass, and velocity of the electron respectively, 'r' be the radius of the orbit, and Z be the atomic number, the equation for the radii of the permitted orbits is given by r = n2 xr1, where 'n' is the principal quantum number, and r1 is the least allowed radius for a hydrogen atom, known as Bohr's radius having a value of 0.53 Å.
The Bohr Model was an important step in the development of atomic theory. However, it has several limitations.