Prove that\(\begin{vmatrix} a^2&bc &ac+c^2 \\ a^2+ab&b^2 &ac\\ ab&b^2+bc &c^2 \end{vmatrix}=4a^2b^2c^2\)
\(\Delta = \begin{vmatrix} a^2&bc &ac+c^2 \\ a^2+ab&b^2 &ac\\ ab&b^2+bc &c^2 \end{vmatrix}\)
Taking out common factors a,b and c from C1,C2 and C3 we have,
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ b&b+c &c \end{vmatrix}\)
Applying R2\(\rightarrow\)R2-R1 and R3\(\rightarrow\)R3-R1,we have:
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ b&b-c &-c \\ b-a&b &-a \end{vmatrix}\)
Applying R2\(\rightarrow\)R2+R1,we heve:
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ 2b&2b &0 \end{vmatrix}\)
Applying R3\(\rightarrow\)R3+R2,we heve:
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ 2b&2b &0 \end{vmatrix}\)
\(\Delta=2a^2bc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ 2b&2b &0 \end{vmatrix}\)
ApplyingC2\(\rightarrow\)C2-C1, we have:
\(\Delta=2a^2bc\begin{vmatrix} a&c-a &a+c \\ a-b&-a &a \\ 0&0 &0 \end{vmatrix}\)
Expanding along R3,we have:
Δ=2ab2c[a(c-a)+a(a+c)]
=2ab2c[ac-a2+a2+ac]
=2ab2c(2ac)
=4a2b2c2
Hence, the given result is proved.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: