Prove that\(\begin{vmatrix} a^2&bc &ac+c^2 \\ a^2+ab&b^2 &ac\\ ab&b^2+bc &c^2 \end{vmatrix}=4a^2b^2c^2\)
\(\Delta = \begin{vmatrix} a^2&bc &ac+c^2 \\ a^2+ab&b^2 &ac\\ ab&b^2+bc &c^2 \end{vmatrix}\)
Taking out common factors a,b and c from C1,C2 and C3 we have,
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ b&b+c &c \end{vmatrix}\)
Applying R2\(\rightarrow\)R2-R1 and R3\(\rightarrow\)R3-R1,we have:
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ b&b-c &-c \\ b-a&b &-a \end{vmatrix}\)
Applying R2\(\rightarrow\)R2+R1,we heve:
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ 2b&2b &0 \end{vmatrix}\)
Applying R3\(\rightarrow\)R3+R2,we heve:
\(\Delta=abc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ 2b&2b &0 \end{vmatrix}\)
\(\Delta=2a^2bc\begin{vmatrix} a&c &a+c \\ a+b&b &a \\ 2b&2b &0 \end{vmatrix}\)
ApplyingC2\(\rightarrow\)C2-C1, we have:
\(\Delta=2a^2bc\begin{vmatrix} a&c-a &a+c \\ a-b&-a &a \\ 0&0 &0 \end{vmatrix}\)
Expanding along R3,we have:
Δ=2ab2c[a(c-a)+a(a+c)]
=2ab2c[ac-a2+a2+ac]
=2ab2c(2ac)
=4a2b2c2
Hence, the given result is proved.
What is the Planning Process?