Question:

Prove that\(\begin{vmatrix}  a^2&bc  &ac+c^2 \\   a^2+ab&b^2  &ac\\   ab&b^2+bc  &c^2  \end{vmatrix}=4a^2b^2c^2\)

Updated On: Sep 1, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(\Delta = \begin{vmatrix}  a^2&bc  &ac+c^2 \\   a^2+ab&b^2  &ac\\   ab&b^2+bc  &c^2  \end{vmatrix}\)

Taking out common factors a,b and c from C1,C2 and C3 we have,
\(\Delta=abc\begin{vmatrix}  a&c  &a+c \\   a+b&b  &a \\   b&b+c  &c  \end{vmatrix}\)
Applying R2\(\rightarrow\)R2-R1 and R3\(\rightarrow\)R3-R1,we have:
\(\Delta=abc\begin{vmatrix}  a&c  &a+c \\   b&b-c  &-c \\   b-a&b  &-a  \end{vmatrix}\)
Applying R2\(\rightarrow\)R2+R1,we heve:
\(\Delta=abc\begin{vmatrix}  a&c  &a+c \\   a+b&b  &a \\   2b&2b  &0  \end{vmatrix}\)
Applying R3\(\rightarrow\)R3+R2,we heve:
\(\Delta=abc\begin{vmatrix}  a&c  &a+c \\   a+b&b  &a \\   2b&2b  &0  \end{vmatrix}\)
\(\Delta=2a^2bc\begin{vmatrix}  a&c  &a+c \\   a+b&b  &a \\   2b&2b  &0  \end{vmatrix}\)
ApplyingC2\(\rightarrow\)C2-C1, we have:
\(\Delta=2a^2bc\begin{vmatrix}  a&c-a  &a+c \\   a-b&-a  &a \\   0&0  &0  \end{vmatrix}\)
Expanding along R3,we have:
Δ=2ab2c[a(c-a)+a(a+c)]
=2ab2c[ac-a2+a2+ac]
=2ab2c(2ac)
=4a2b2c2

Hence, the given result is proved.

Was this answer helpful?
0
0