Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is \(\frac{8}{27}\) of the volume of the sphere.
Let \(r\) and h be the radius and height of the cone respectively inscribed in a sphere of
radius R.
Let \(V\) be the volume of the cone.
Then\(,V=\frac{1}{3}\pi r^{2}h\)
Height of the cone is given by,
\(h=R+AB=R+\sqrt{R^{2}-r^{2}} [ABC \space is\space a\space right\space triangle]\)
\(∴V=\frac{1}{3}\pi r^{2}h(R+\sqrt{R^{2}-r^{2})}\)
\(=\frac{1}{3}\pi r^{2}hR+\frac{1}{3}\pi r^{2}\sqrt{R^{2}-r^{2}}\)
\(∴\frac{dV}{dr}=\)\(\frac{2}{3}\pi rR+\frac{2}{3}\pi r\sqrt{R^{2}-r^{2}}+\frac{1}{3}\pi r^{2}.\frac{(-2r)}{2\sqrt{R^{2}-r^{2}}}\)
\(=\frac{2}{3}\pi rR+\frac{2}{3}\pi r\sqrt{R^{2}-r^{2}}-\frac{1}{3}\pi \frac{r^{3}}{\sqrt{R^{2}-r^{2}}}\)
\(=\frac{2}{3}\pi rR+\frac{2\pi r(R^{2}-r^{2})-\pi r^{3}}{3\sqrt{R^{2}-r^{2}}}\)
\(=\frac{2}{3}\pi rR+\frac{2\pi rR^{2}-3\pi r^{3}}{3\sqrt{R^{2}-r^{2}}}\)
\(\frac{d^{2}V}{dr^{2}}\)=\(\frac{2\pi R}{3}\)+\(\frac{3\sqrt{R^{2}-r^{2}}(2\pi R^{2}-9\pi r^{2})-(2\pi rR^{2}-3\pi r^{3}).\frac{(-2r)}{{6\sqrt{R^{2}-r^{2}}}}}{9(R^{2}-r^{2})}\)
=\(\frac{2}{3}\pi R\)\(+\frac{9(R^{2}-r^{2})(2\pi R^{2}-9\pi r^{2})+2\pi r^{2}+3\pi r^{4}}{27(R^{2}-r^{2})\frac{3}{2}}\)
Now,\(\frac{dV}{dr}\)\(=0⇒\)\(\pi 23rR\)=\(\frac{3\pi r^{3}-2\pi rR^{2}}{3\sqrt{R^{2}-r^{2}}}\)
\(⇒2R={3r^{2}-2R2}{\sqrt{R^{2}-r^{2}}}\)\(⇒2R\sqrt{R^{2}-r^{2}}=3r^{2}-2R^{2}\)
\(⇒4R^{2}(R^{2}-r^{2})=(3r^{2}-2R^{2})^{2}\)
\(⇒4R^{4}-4R^{2}r^{2}=9r^{4}+4R^{4}-12r^{2}R^{2}\)
\(⇒9r^{4}=8R^{2}r^{2}\)
\(⇒r^{2}=\frac{8}{9R^{2}}\)
When \(r^{2}=\frac{8}{9R^{2}},\)then\(\frac{d^{2}V}{dr^{2}}<0.\)
⧠By second derivative test,the volume of the cone is the maximum when \(r^{2}=\frac{8}{9R^{2}}.\)
When \(r^{2}=\frac{8}{9R^{2}}\),\(h=R+\sqrt{R^{2}-\frac{8}{9}R^{2}}\)\(=R+\sqrt{\frac{1}{9R^{2}}}=R+\frac{R}{3}=\frac{4}{3R.}\)
Therefore,
\(=\frac{1}{3}\pi (\frac{8}{9}R^{2})(\frac{4}{3}R)\)
\(=\frac{8}{27}(\frac{4}{3}\pi R^{3})\)
\(=\frac{8}{27}\times\)(Volume of sphere)
Hence,the volume of the largest cone that can be inscribed in the sphere is\(\frac{8}{27}\)
the volume of the sphere.
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
What is the Planning Process?