Step 1: Compute $A^{2}$. \[ A^{2} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 4+3 & 6+6 \\ 2+2 & 3+4 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} \] Step 2: Compute $A^{2} - 4A + I_{2}$. \[ A^{2} - 4A + I_{2} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - 4 \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] \[ = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \] Hence proved. ✅ Step 3: Find $A^{-1}$. From Cayley-Hamilton theorem: \[ A^{2} - 4A + I = 0 \] \[ \implies A^{2} - 4A = -I \] \[ \implies A(A - 4I) = -I \] \[ \implies A^{-1} = -(A - 4I) \] \[ = -\left(\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} - \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}\right) = -\begin{bmatrix} -2 & 3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} \]
Final Answer: \[ \boxed{A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}} \]
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 