Step 1: Assume the opposite.
Let $\sqrt{3}$ be rational. Then it can be expressed as: \[ \sqrt{3} = \dfrac{p}{q}, \quad \text{where } p, q \text{ are integers and } \gcd(p, q) = 1 \] Step 2: Square both sides.
\[ 3 = \dfrac{p^2}{q^2} \Rightarrow p^2 = 3q^2 \] Step 3: Analyze divisibility.
Since $p^2$ is divisible by 3, $p$ must also be divisible by 3. Let $p = 3k$.
Step 4: Substitute back.
\[ p^2 = (3k)^2 = 9k^2 \Rightarrow 9k^2 = 3q^2 \Rightarrow q^2 = 3k^2 \] Thus, $q^2$ is also divisible by 3, so $q$ is divisible by 3.
Step 5: Contradiction.
This contradicts the assumption that $p$ and $q$ have no common factor other than 1.
Step 6: Conclusion.
Therefore, $\sqrt{3}$ is irrational.
Match List-I with List-II and choose the correct option:
\[ \begin{array}{|l|l|} \hline \textbf{LIST-I (Function)} & \textbf{LIST-II (Expansion)} \\ \hline A. \log(1-x) & I. 1 + \frac{1}{3} + \frac{1}{6} + \frac{3}{40} + \frac{15}{336} + \dots \\ \hline B. \sin^{-1} x & II. 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \\ \hline C. \log 2 & III. x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots, -1 < x \le 1 \\ \hline D. \frac{\pi}{2} & IV. -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots, -1 \le x < 1 \\ \hline \end{array} \]
The following table shows the ages of the patients admitted in a hospital during a year. Find the mode and the median of these data.
\[\begin{array}{|c|c|c|c|c|c|c|} \hline Age (in years) & 5-15 & 15-25 & 25-35 & 35-45 & 45-55 & 55-65 \\ \hline \text{Number of patients} & \text{6} & \text{11} & \text{21} & \text{23} & \text{14} & \text{5} \\ \hline \end{array}\]