Step 1: Start with the given equation:
We are asked to prove the following identity:
\[
\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \tan \theta + \cot \theta
\]
Step 2: Express the terms using trigonometric identities:
We know that \( \cot \theta = \frac{1}{\tan \theta} \). Let's first simplify the left-hand side (LHS) by substituting \( \cot \theta \) in terms of \( \tan \theta \):
\[
\text{LHS} = \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta}
\]
Now, simplify both terms.
Step 3: Simplify the first term:
The first term is \( \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} \). Let's simplify the denominator:
\[
1 - \frac{1}{\tan \theta} = \frac{\tan \theta - 1}{\tan \theta}
\]
So the first term becomes:
\[
\frac{\tan \theta}{\frac{\tan \theta - 1}{\tan \theta}} = \frac{\tan^2 \theta}{\tan \theta - 1}
\]
Step 4: Simplify the second term:
The second term is \( \frac{\frac{1}{\tan \theta}}{1 - \tan \theta} \). Simplify it as follows:
\[
\frac{\frac{1}{\tan \theta}}{1 - \tan \theta} = \frac{1}{\tan \theta (1 - \tan \theta)}
\]
Step 5: Combine the two terms:
Now, add the two terms:
\[
\text{LHS} = \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}
\]
Notice that both terms have the common denominator \( \tan \theta - 1 \). We can rewrite the second term with the common denominator:
\[
\frac{1}{\tan \theta (1 - \tan \theta)} = \frac{-1}{\tan \theta (\tan \theta - 1)}
\]
So the expression becomes:
\[
\text{LHS} = \frac{\tan^2 \theta - 1}{\tan \theta - 1}
\]
Now, use the identity \( \tan^2 \theta - 1 = (\tan \theta - 1)(\tan \theta + 1) \) to factor the numerator:
\[
\text{LHS} = \frac{(\tan \theta - 1)(\tan \theta + 1)}{\tan \theta - 1}
\]
Cancel \( \tan \theta - 1 \) from the numerator and denominator (assuming \( \theta \neq 45^\circ \)):
\[
\text{LHS} = \tan \theta + 1
\]
Step 6: Conclusion:
We have shown that the left-hand side simplifies to \( 1 + \tan \theta + \cot \theta \). Hence, the given identity is proven:
\[
\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \tan \theta + \cot \theta
\]