Step 1: Start with the given expression:
We are given the expression:
\[
\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta}
\]
We need to prove that this expression equals:
\[
1 + \tan \theta + \cot \theta
\]
Step 2: Express $\cot \theta$ in terms of $\tan \theta$:
Recall that $\cot \theta = \frac{1}{\tan \theta}$. Using this, we can rewrite the given expression:
\[
\frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta}
\]
Simplify the denominators:
\[
\frac{\tan \theta}{\frac{\tan \theta - 1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta}
\]
Now simplify each fraction:
\[
\frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}
\]
Step 3: Combine the terms:
Now, observe that the two terms have a similar denominator. We can rewrite the second term as:
\[
\frac{1}{\tan \theta (1 - \tan \theta)} = \frac{-1}{\tan \theta (\tan \theta - 1)}
\]
Thus, the expression becomes:
\[
\frac{\tan^2 \theta}{\tan \theta - 1} - \frac{1}{\tan \theta (\tan \theta - 1)}
\]
Now, we combine the terms by writing them over a common denominator:
\[
\frac{\tan^3 \theta - 1}{\tan \theta (\tan \theta - 1)}
\]
Step 4: Simplify the numerator:
Notice that the numerator $\tan^3 \theta - 1$ is a difference of cubes, which can be factored as:
\[
\tan^3 \theta - 1 = (\tan \theta - 1)(\tan^2 \theta + \tan \theta + 1)
\]
Thus, the expression becomes:
\[
\frac{(\tan \theta - 1)(\tan^2 \theta + \tan \theta + 1)}{\tan \theta (\tan \theta - 1)}
\]
Cancel the common factor of $(\tan \theta - 1)$ in the numerator and denominator:
\[
\frac{\tan^2 \theta + \tan \theta + 1}{\tan \theta}
\]
Now, divide each term in the numerator by $\tan \theta$:
\[
\frac{\tan^2 \theta}{\tan \theta} + \frac{\tan \theta}{\tan \theta} + \frac{1}{\tan \theta}
\]
This simplifies to:
\[
\tan \theta + 1 + \cot \theta
\]
Step 5: Final conclusion:
We have shown that:
\[
\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \tan \theta + \cot \theta
\]
Thus, the given expression is true.