
Let ABCD be a cyclic parallelogram.
∠A = ∠C and ∠B = ∠D
∠A + ∠C = 180° (Opposite angles of a cyclic quadrilateral) ... (1)
We know that opposite angles of a parallelogram are equal.
From equation (1),
∠A + ∠C = 180°
∠A + ∠A = 180°
∠2∠A = 180°
∠A = 90°
Parallelogram ABCD has one of its interior angles as 90°. Therefore, it is a rectangle.
In figure \( \angle BAP = 80^\circ \) and \( \angle ABC = 30^\circ \), then \( \angle AQC \) will be:


(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
ABCD is a quadrilateral in which AD = BC and ∠ DAB = ∠ CBA (see Fig. 7.17). Prove that
(i) ∆ ABD ≅ ∆ BAC
(ii) BD = AC
(iii) ∠ ABD = ∠ BAC.
