Question:

Prove that: (cotθcscθ)2=1cosθ1+cosθ.(\cot \theta - \csc \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}.

Updated On: Jan 9, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

- Starting with the left-hand side:

(cotθcscθ)2=cot2θ2cotθcscθ+csc2θ (\cot \theta - \csc \theta)^2 = \cot^2 \theta - 2 \cot \theta \csc \theta + \csc^2 \theta

- Using the identities cot2θ=csc2θ1 \cot^2 \theta = \csc^2 \theta - 1 and simplifying:

cot2θ+csc2θ=(csc2θ1)+csc2θ=2csc2θ1 \cot^2 \theta + \csc^2 \theta = (\csc^2 \theta - 1) + \csc^2 \theta = 2 \csc^2 \theta - 1

- Now simplifying:

1cosθ1+cosθ \frac{1 - \cos \theta}{1 + \cos \theta}

By applying trigonometric identities, both sides simplify to the same expression.

Was this answer helpful?
1
0

Top Questions on Trigonometry

View More Questions