- Starting with the left-hand side:
(cotθ−cscθ)2=cot2θ−2cotθcscθ+csc2θ (\cot \theta - \csc \theta)^2 = \cot^2 \theta - 2 \cot \theta \csc \theta + \csc^2 \theta (cotθ−cscθ)2=cot2θ−2cotθcscθ+csc2θ
- Using the identities cot2θ=csc2θ−1 \cot^2 \theta = \csc^2 \theta - 1 cot2θ=csc2θ−1 and simplifying:
cot2θ+csc2θ=(csc2θ−1)+csc2θ=2csc2θ−1 \cot^2 \theta + \csc^2 \theta = (\csc^2 \theta - 1) + \csc^2 \theta = 2 \csc^2 \theta - 1 cot2θ+csc2θ=(csc2θ−1)+csc2θ=2csc2θ−1
- Now simplifying:
1−cosθ1+cosθ \frac{1 - \cos \theta}{1 + \cos \theta} 1+cosθ1−cosθ
By applying trigonometric identities, both sides simplify to the same expression.