Step 1: Expand the left-hand side of the equation:
We start with the left-hand side of the given equation:
\[
(\cot \theta - \csc \theta)^2
\]
First, recall the trigonometric identities for $\cot \theta$ and $\csc \theta$:
\[
\cot \theta = \frac{\cos \theta}{\sin \theta} \quad \text{and} \quad \csc \theta = \frac{1}{\sin \theta}
\]
Now, substitute these into the expression:
\[
(\cot \theta - \csc \theta)^2 = \left( \frac{\cos \theta}{\sin \theta} - \frac{1}{\sin \theta} \right)^2
\]
Factor out $\frac{1}{\sin \theta}$:
\[
= \left( \frac{\cos \theta - 1}{\sin \theta} \right)^2
\]
Now, square both the numerator and the denominator:
\[
= \frac{(\cos \theta - 1)^2}{\sin^2 \theta}
\]
Step 2: Express the right-hand side of the equation:
The right-hand side of the given equation is:
\[
\frac{1 - \cos \theta}{1 + \cos \theta}
\]
Step 3: Manipulate the expression to match both sides:
We will work with the right-hand side. To simplify, multiply both the numerator and the denominator by $(1 - \cos \theta)$:
\[
\frac{1 - \cos \theta}{1 + \cos \theta} \times \frac{1 - \cos \theta}{1 - \cos \theta} = \frac{(1 - \cos \theta)^2}{(1 + \cos \theta)(1 - \cos \theta)}
\]
Now, apply the difference of squares formula in the denominator:
\[
(1 + \cos \theta)(1 - \cos \theta) = 1^2 - (\cos \theta)^2 = 1 - \cos^2 \theta
\]
Using the Pythagorean identity, we know that:
\[
\sin^2 \theta = 1 - \cos^2 \theta
\]
Thus, the denominator becomes $\sin^2 \theta$. Therefore, we have:
\[
\frac{(1 - \cos \theta)^2}{\sin^2 \theta}
\]
Step 4: Conclusion:
We now observe that both the left-hand side and the right-hand side of the equation are the same:
\[
\frac{(\cos \theta - 1)^2}{\sin^2 \theta} = \frac{(1 - \cos \theta)^2}{\sin^2 \theta}
\]
Thus, we have proven that:
\[
(\cot \theta - \csc \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}
\]