To determine the number of trichloro derivatives from optically active 1,2-dichloropropane:
1. Identification of Compound "x":
The optically active dichloro product must be 1,2-dichloropropane (CH3CHClCH2Cl) as it contains a chiral center at C-2.
2. Possible Trichloro Products:
Chlorination can occur at three distinct positions:
3. Isomer Count:
These substitutions yield three distinct structural isomers. No additional unique structures are possible through single hydrogen substitutions on this compound.
The number of possible trichloro structural isomers is 3.
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
A hydrocarbon which does not belong to the same homologous series of carbon compounds is
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: