The alcohol reacts with \( \text{NaI} \) and \( \text{H}_3\text{PO}_4 \) to form the corresponding iodoalkane via a nucleophilic substitution reaction. In this process:
The reaction is as follows:
\[ \text{CH}_3-\text{CH}_2-\text{CH(OH)}-\text{CH}_3 \xrightarrow{\text{NaI, H}_3\text{PO}_4} \text{CH}_3-\text{CH}_2-\text{CH(I)}-\text{CH}_3 \]
The iodoalkane reacts with magnesium in dry ether to form a Grignard reagent:
\[ \text{CH}_3-\text{CH}_2-\text{CH(I)}-\text{CH}_3 \xrightarrow{\text{Mg, Dry Ether}} \text{CH}_3-\text{CH}_2-\text{CH(MgI)}-\text{CH}_3 \]
Here:
The Grignard reagent reacts with deuterated water (\( \text{D}_2\text{O} \)) to form the deuterated alkane. The \( \text{C-MgI} \) bond is replaced by a \( \text{C-D} \) bond:
\[ \text{CH}_3-\text{CH}_2-\text{CH(MgI)}-\text{CH}_3 \xrightarrow{\text{D}_2\text{O}} \text{CH}_3-\text{CH}_2-\text{CH(D)}-\text{CH}_3 \]
The product formed is \( \text{CH}_3-\text{CH}_2-\text{CH(D)}-\text{CH}_3 \).
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]