Probability Density function $f(x)$ of a continuous random variable is given by $f(x) = ce^{-|x|}, -\infty<x<\infty$. If the total probability $\int_{-\infty}^{\infty} f(x) dx = 1$ then $c =$
Show Hint
To find the constant in a PDF, set the integral of the PDF over its entire domain equal to 1 and solve for the constant. Remember the definition of the absolute value function when integrating.
For a probability density function, the integral over its entire range must equal 1.
Given $f(x) = ce^{-|x|}$ for $-\infty<x<\infty$, we have:
$$\int_{-\infty}^{\infty} ce^{-|x|} dx = 1$$
Since $|x| = x$ for $x \ge 0$ and $|x| = -x$ for $x<0$, we can split the integral into two parts:
$$\int_{-\infty}^{0} ce^{-(-x)} dx + \int_{0}^{\infty} ce^{-(x)} dx = 1$$
$$c \int_{-\infty}^{0} e^{x} dx + c \int_{0}^{\infty} e^{-x} dx = 1$$
$$c [e^x]_{-\infty}^{0} + c [-e^{-x}]_{0}^{\infty} = 1$$
$$c (e^0 - \lim_{x \to -\infty} e^x) + c (-\lim_{x \to \infty} e^{-x} - (-e^{-0})) = 1$$
$$c (1 - 0) + c (-0 - (-1)) = 1$$
$$c(1) + c(1) = 1$$
$$2c = 1$$
$$c = \frac{1}{2} = 0.5$$
Thus, the value of $c$ is $0.5$.