209
211
113
429
Let the terms of the sequence be:
\( \frac{a}{r^2}, \frac{a}{r}, a, ar, ar^2 \)
Step 1: Given Equations
From the problem:
\( \frac{a}{r^2} + \frac{a}{r} + a + ar + ar^2 = 5 \times \frac{31}{10} \quad \dots (1) \)
And:
\( \frac{r^2}{a} + \frac{r}{a} + \frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} = 5 \times \frac{31}{40} \quad \dots (2) \)
Step 2: Divide (1) by (2)
Divide equation (1) by equation (2):
\( \frac{\frac{a^2}{r^2} + \frac{a^2}{r} + a^2 + a^2r + a^2r^2}{r^2 + r + 1 + \frac{1}{r} + \frac{1}{r^2} } = \frac{31}{10} \frac{40}{31} = 4 \)
From this:
\( a^2 = 4 \Rightarrow a = 2 \text{ (since } a > 0 \text{)} \)
Step 3: Solve for r
From \( r + \frac{1}{r} = \frac{5}{2} \) :
\( r = 2 \)
Step 4: Sequence Terms
The sequence terms are:
\( \frac{1}{2}, 1, 2, 4, 8 \)
Step 5: Variance ( \( \sigma^2 \) )
Using the formula for variance:
\( \sigma^2 = \frac{\Sigma x^2}{N} - \left(\frac{\Sigma x}{N}\right)^2 \)
Compute \( \Sigma x \) and \( \Sigma x^2 \):
\( \Sigma x = \frac{1}{2} + 1 + 2 + 4 + 8 = 15.5 \)
\( \Sigma x^2 = (\frac{1}{2})^2 + 1^2 + 2^2 + 4^2 + 8^2 = \frac{1}{4} + 1 + 4 + 16 + 64 = 85.25 \)
Substitute into the formula:
\( \sigma^2 = \frac{85.25}{5} - \left(\frac{15.5}{5}\right)^2 \)
Simplify:
\( \sigma^2 = \frac{186}{25} \)
From:
\( \frac{186}{25} = \frac{M}{N}, \quad M + N = 186 + 25 = 211 \)
Final Answer: \( M + N = 211 \)
The correct answer is option (B) : 211
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]
Statistics is a field of mathematics concerned with the study of data collection, data analysis, data interpretation, data presentation, and data organization. Statistics is mainly used to acquire a better understanding of data and to focus on specific applications. Also, Statistics is the process of gathering, assessing, and summarising data in a mathematical form.
Using measures of central tendency and measures of dispersion, the descriptive technique of statistics is utilized to describe the data collected and summarise the data and its attributes.
This statistical strategy is utilized to produce conclusions from data. Inferential statistics rely on statistical tests on samples to make inferences, and it does so by discovering variations between the two groups. The p-value is calculated and differentiated to the probability of chance() = 0.05. If the p-value is less than or equivalent to, the p-value is considered statistically significant.