We can find the velocity (v) of the particle at any time by taking the derivative of its position (x) with respect to time (t):v = dx/dt
For the given position function, x = 2.5t^2, we have:
v = d(2.5t^2)/dt = 5t
Therefore, the velocity of the particle at time t is 5t m/s.
To find the velocity at t = 5 seconds, we substitute t = 5 into the expression for v:
v = 5t = 5(5) = 25 m/s
Hence, the speed of the particle at t = 5 seconds is 25 m/s. Note that speed is the magnitude of velocity and is always non-negative, so we don't need to include a sign.
Answer. C
A bead P sliding on a frictionless semi-circular string... bead Q ejected... relation between $t_P$ and $t_Q$ is 
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.