A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is: 
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The kinetic energy needed to project a body of mass $m$ from earth surface to infinity is $\frac{1}{2} \mathrm{mgR}$, where R is the radius of earth. Reason R: The maximum potential energy of a body is zero when it is projected to infinity from earth surface.
For a short dipole placed at origin O, the dipole moment P is along the X-axis, as shown in the figure. If the electric potential and electric field at A are V and E respectively, then the correct combination of the electric potential and electric field, respectively, at point B on the Y-axis is given by:

If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
A wire of resistance $ R $ is bent into a triangular pyramid as shown in the figure, with each segment having the same length. The resistance between points $ A $ and $ B $ is $ \frac{R}{n} $. The value of $ n $ is:
In mechanics, the universal force of attraction acting between all matter is known as Gravity, also called gravitation, . It is the weakest known force in nature.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
On combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2
The dimension formula of G is [M-1L3T-2].