If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
Match List - I with List - II.
Choose the correct answer from the options given below :
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:Statement 1: Total number of elements in $ R_1 $ is 18.Statement 2: $ R $ is symmetric but not reflexive and transitive.
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
A loop ABCD, carrying current $ I = 12 \, \text{A} $, is placed in a plane, consists of two semi-circular segments of radius $ R_1 = 6\pi \, \text{m} $ and $ R_2 = 4\pi \, \text{m} $. The magnitude of the resultant magnetic field at center O is $ k \times 10^{-7} \, \text{T} $. The value of $ k $ is ______ (Given $ \mu_0 = 4\pi \times 10^{-7} \, \text{T m A}^{-1} $)
Among $ 10^{-10} $ g (each) of the following elements, which one will have the highest number of atoms? Element : Pb, Po, Pr and Pt
During estimation of Nitrogen by Dumas' method of compound X (0.42 g) : mL of $ N_2 $ gas will be liberated at STP. (nearest integer) $\text{(Given molar mass in g mol}^{-1}\text{ : C : 12, H : 1, N : 14})$
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
Let us consider a reversible reaction at temperature, T . In this reaction, both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ were observed to have positive values. If the equilibrium temperature is $\mathrm{T}_{\mathrm{e}}$, then the reaction becomes spontaneous at: