Choose the most appropriate option. If \( A \) is a square matrix such that \( A^2 = A \) and \( B = I \), then \( AB + BA + I - (I - A)^2 \) is equal to:
Calculate
\[ \begin{vmatrix} x & y & x + y \\ y & x + y & x \\ x + y & x & y \end{vmatrix} \]
Choose the most appropriate options. If \( |z^2 - 1| = |z|^2 + 1 \), then \( z \) lies on a
Choose the most appropriate options. If \( f(x) = [x \sin n\pi x] \), then which of the following is incorrect?
Choose the most appropriate option. Find the distance from the point A (2, 3, -1) to the given straight line. \[ x = 3t + 5, \quad y = 2t, \quad z = -2t - 25 \]
Choose the most appropriate options. The limit \[ \lim_{x \to 0} \frac{1 - \cos 2x}{x \tan 4x} \]
If \[ f(x) = \begin{cases} \frac{1 - \sin x}{(n - 2x)^2} & \text{if} \quad x \neq \frac{\pi}{2} \log (\sin x) \cdot \log \left( 1 + \frac{\pi}{4x + x^2} \right) & \text{if} \quad x = \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), then \( k \) is equal to