A, B, C and D are vectors of length 4. The rank of the matrix
A = \(\begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}\),
B = \(\begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix}\),
C = \(\begin{bmatrix} c_1 & c_2 & c_3 & c_4 \end{bmatrix}\),
D = \(\begin{bmatrix} d_1 & d_2 & d_3 & d_4 \end{bmatrix}\)
It is known that B is not a scalar multiple of A. Also, C is linearly independent of A and B. Further, \( D = 3A + 2B + C \)
The rank of the matrix \( \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \\ d_1 & d_2 & d_3 & d_4 \end{bmatrix} \) is \(\underline{\hspace{1cm}}\)