The modulus of the composite \( E_c \) is given by the rule of mixtures:
\[
E_c = V_f E_f + V_m E_m
\]
where:
- \( V_f = 0.5 \) (volume fraction of fiber),
- \( V_m = 0.5 \) (volume fraction of matrix),
- \( E_f = 350 \, \text{GPa} \) (elastic modulus of fiber),
- \( E_m = 3.5 \, \text{GPa} \) (elastic modulus of matrix).
Substituting the values:
\[
E_c = 0.5 \times 350 + 0.5 \times 3.5 = 175 + 1.75 = 176.75 \, \text{GPa}.
\]
Now, the ratio of the composite modulus to the matrix modulus is:
\[
\frac{E_c}{E_m} = \frac{176.75}{3.5} \approx 50.5.
\]
Thus, the ratio is approximately 50.5.