Step 1: Understand the relationship between cooling rate and Tg.
As the cooling rate increases, the polymer chains do not have enough time to move and arrange themselves into a more relaxed configuration, leading to a higher glass transition temperature. This is because the polymer remains in a less ordered state.
Step 2: Analyze the options.
- (A) decreases: This is incorrect because an increased cooling rate raises the Tg, not lowers it.
- (B) increases: This is correct because faster cooling increases the glass transition temperature.
- (C) stays unaltered: This is incorrect, as the Tg is affected by the cooling rate.
- (D) shows a non-monotonic dependence: This is incorrect, as the Tg typically increases with an increase in cooling rate.
Step 3: Conclusion.
The glass transition temperature increases with a faster cooling rate, as the polymer chains are restricted from rearranging into a relaxed state.
Final Answer: \text{(B) increases}
Potato slices weighing 50 kg is dried from 60% moisture content (wet basis) to 5% moisture content (dry basis). The amount of dried potato slices obtained (in kg) is ............ (Answer in integer)
Two Carnot heat engines (E1 and E2) are operating in series as shown in the figure. Engine E1 receives heat from a reservoir at \(T_H = 1600 \, {K}\) and does work \(W_1\). Engine E2 receives heat from an intermediate reservoir at \(T\), does work \(W_2\), and rejects heat to a reservoir at \(T_L = 400 \, {K}\). Both the engines have identical thermal efficiencies. The temperature \(T\) (in K) of the intermediate reservoir is ........ (answer in integer). 
A bar of length \( L = 1 \, {m} \) is fixed at one end. Before heating its free end has a gap of \( \delta = 0.1 \, {mm} \) from a rigid wall as shown in the figure. Now the bar is heated resulting in a uniform temperature rise of \( 10^\circ {C} \). The coefficient of linear thermal expansion of the material is \( 20 \times 10^{-6} / \degree C \) and the Young’s modulus of elasticity is 100 GPa. Assume that the material properties do not change with temperature.
The magnitude of the resulting axial stress on the bar is .......... MPa (in integer). 
A massless cantilever beam, with a tip mass \( m \) of 10 kg, is modeled as an equivalent spring-mass system as shown in the figure. The beam is of length \( L = 1 \, {m} \), with a circular cross-section of diameter \( d = 20 \, {mm} \). The Young’s modulus of the beam material is 200 GPa.
The natural frequency of the spring-mass system is ............ Hz (rounded off to two decimal places).
A simply-supported beam has a circular cross-section with a diameter of 20 mm, area of 314.2 mm\(^2\), area moment of inertia of 7854 mm\(^4\), and a length \( L \) of 4 m. A point load \( P = 100 \, {N} \) acts at the center and an axial load \( Q = 20 \, {kN} \) acts through the centroidal axis as shown in the figure.
The magnitude of the offset between the neutral axis and the centroidal axis, at \( L/2 \) from the left, is ............ mm (rounded off to one decimal place).