Step 1: Understand the phases of liquid.
- Super-heated liquid: This is a liquid that has been heated above its saturation temperature at a given pressure.
- Sub-cooled liquid: This is the correct term when the liquid's temperature is lower than its saturation temperature.
- Metastable liquid: This refers to a liquid that is in a non-equilibrium state, often unstable, but not the correct term for sub-cooled liquid.
- Flashing liquid: This refers to a liquid that undergoes a phase change to vapor under reduced pressure.
Step 2: Conclusion.
The liquid phase is termed sub-cooled liquid when its temperature is lower than the saturation temperature at the given pressure.
Final Answer: \text{(B) sub-cooled liquid}
Four different Entropy (S) - Temperature (T) diagrams, representing liquid to vapour phase transition process of a pure substance in a closed system under constant pressure are shown. The diagram, which correctly represents the process, is:

For the Refrigerant R-134 (at 1 MPa and 50°C), the difference between the specific volume computed by assuming it to be an ideal gas and its actual specific volume is: \( v_{\text{ideal}} - v_{\text{actual}} = 4.529 \times 10^{-3} \, \text{m}^3/\text{kg} \). If the compressibility factor associated with this state is \( Z = 0.84 \), then \( v_{\text{com}} - v_{\text{actual}} = \underline{\hspace{2cm}} \times 10^{-3} \, \text{m}^3/\text{kg} \) (3 decimal places).
Potato slices weighing 50 kg is dried from 60% moisture content (wet basis) to 5% moisture content (dry basis). The amount of dried potato slices obtained (in kg) is ............ (Answer in integer)
Two Carnot heat engines (E1 and E2) are operating in series as shown in the figure. Engine E1 receives heat from a reservoir at \(T_H = 1600 \, {K}\) and does work \(W_1\). Engine E2 receives heat from an intermediate reservoir at \(T\), does work \(W_2\), and rejects heat to a reservoir at \(T_L = 400 \, {K}\). Both the engines have identical thermal efficiencies. The temperature \(T\) (in K) of the intermediate reservoir is ........ (answer in integer). 
A bar of length \( L = 1 \, {m} \) is fixed at one end. Before heating its free end has a gap of \( \delta = 0.1 \, {mm} \) from a rigid wall as shown in the figure. Now the bar is heated resulting in a uniform temperature rise of \( 10^\circ {C} \). The coefficient of linear thermal expansion of the material is \( 20 \times 10^{-6} / \degree C \) and the Young’s modulus of elasticity is 100 GPa. Assume that the material properties do not change with temperature.
The magnitude of the resulting axial stress on the bar is .......... MPa (in integer). 
A massless cantilever beam, with a tip mass \( m \) of 10 kg, is modeled as an equivalent spring-mass system as shown in the figure. The beam is of length \( L = 1 \, {m} \), with a circular cross-section of diameter \( d = 20 \, {mm} \). The Young’s modulus of the beam material is 200 GPa.
The natural frequency of the spring-mass system is ............ Hz (rounded off to two decimal places).
A simply-supported beam has a circular cross-section with a diameter of 20 mm, area of 314.2 mm\(^2\), area moment of inertia of 7854 mm\(^4\), and a length \( L \) of 4 m. A point load \( P = 100 \, {N} \) acts at the center and an axial load \( Q = 20 \, {kN} \) acts through the centroidal axis as shown in the figure.
The magnitude of the offset between the neutral axis and the centroidal axis, at \( L/2 \) from the left, is ............ mm (rounded off to one decimal place).