Ideal Gas Equation and Density Relationship:
For an ideal gas, the equation is given by:
\( PV = nRT \)
or,
\( P = \frac{nRT}{V} \)
where \( P \) is the pressure, \( T \) is the temperature, \( R \) is the gas constant, \( n \) is the number of moles, and \( V \) is the volume.
We can express \( P \) in terms of density \( \rho \) by substituting \( \rho = \frac{m}{V} \), where \( m \) is the mass of the gas:
\( P = \frac{\rho RT}{M} \)
where \( M \) is the molar mass of the gas. Rearranging, we get:
\( \rho = \frac{PM}{RT} \)
Analyze the PT Graph for Different Densities:
Since \( \rho = \frac{PM}{RT} \), for a given temperature \( T \), the density \( \rho \) of the gas is directly proportional to the pressure \( P \):
\( \rho \propto P \)
Therefore, at the same temperature, a higher pressure indicates a higher density.
Interpretation of the PT Diagram:
In the given PT diagram, we observe that:
\( P_1 > P_2 > P_3 \) for the same temperature \( T \)
Therefore, based on the proportional relationship \( \rho \propto P \) at constant temperature, we have:
\( \rho_1 > \rho_2 > \rho_3 \)
Conclusion:
The correct statement is: \( \rho_1 > \rho_2 \) which corresponds to Option (2).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: