Given:
- Point \( P \) lies on the line:
\[
x + y + 5 = 0
\]
- The perpendicular distance from \( P \) to the line:
\[
2x + 3y + 3 = 0
\]
is \( \sqrt{13} \).
Step 1: Let \( P = (x, y) \) satisfy:
\[
x + y + 5 = 0 \implies y = -x - 5
\]
Step 2: Distance of point \( (x, y) \) from line \( 2x + 3y + 3 = 0 \) is:
\[
d = \frac{|2x + 3y + 3|}{\sqrt{2^2 + 3^2}} = \frac{|2x + 3y + 3|}{\sqrt{13}} = \sqrt{13}
\]
Multiply both sides by \( \sqrt{13} \):
\[
|2x + 3y + 3| = 13
\]
Step 3: Substitute \( y = -x - 5 \):
\[
|2x + 3(-x - 5) + 3| = 13
\]
\[
|2x - 3x - 15 + 3| = 13
\]
\[
|-x - 12| = 13
\]
\[
|x + 12| = 13
\]
So:
\[
x + 12 = \pm 13
\]
Two cases:
1) \( x + 12 = 13 \implies x = 1 \)
2) \( x + 12 = -13 \implies x = -25 \)
Step 4: Find corresponding \( y \):
For \( x = 1 \):
\[
y = -1 - 5 = -6
\]
For \( x = -25 \):
\[
y = 25 - 5 = 20
\]
Step 5: So, possible points are \( (1, -6) \) and \( (-25, 20) \).
Step 6: Check which is correct (both satisfy conditions, but generally first is preferred).
Therefore,
\[
\boxed{(1, -6)}
\]