The equation of the circle is:
\[
x^2 + y^2 = a^2
\]
The ends of the diameter satisfy \( (x_1, y_1) \) and \( (x_2, y_2) \), where:
\[
(x_1, y_1) = (-a, a), (x_2, y_2) = (a, -a)
\]
The perpendicular distances of these points from the line \( x + y = 1 \) are given by:
\[
s = \frac{|(-a) + a - 1|}{\sqrt{1^2 + 1^2}} = \frac{|-1|}{\sqrt{2}} = \frac{1}{\sqrt{2}}
\]
\[
t = \frac{|a - a - 1|}{\sqrt{1^2 + 1^2}} = \frac{|-1|}{\sqrt{2}} = \frac{1}{\sqrt{2}}
\]
When \( st \) is maximized, we compute:
\[
s + t = a + \frac{1}{\sqrt{2}}
\]
Thus, the correct answer is:
\[
a + \frac{1}{\sqrt{2}}
\]