In an acidic medium, the reaction between potassium permanganate (\(\text{KMnO}_4\)) and oxalic acid (\(\text{H}_2\text{C}_2\text{O}_4\)) can be represented as:
\[ 2 \text{KMnO}_4 + 5 \text{H}_2\text{C}_2\text{O}_4 + 6 \text{H}^+ \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2\text{O} \]
Using the Concept of Equivalents:
According to the principle of equivalents:
\[ \text{equivalents of KMnO}_4 = \text{equivalents of H}_2\text{C}_2\text{O}_4 \]
Calculate Equivalents for Each Solution:
For oxalic acid (\(\text{H}_2\text{C}_2\text{O}_4\)):
\[ \text{Molarity} \times \text{Volume} \times \text{n-factor} = 2 \times 20 \times 2 = 80 \, \text{meq} \]
where \(\text{n-factor} = 2\) for oxalic acid.
For \(\text{KMnO}_4\):
\[ M \times 2 \times 5 = 10M \, \text{meq} \]
where \(\text{n-factor} = 5\) for \(\text{KMnO}_4\).
Equating Equivalents:
\[ 10M = 80 \]
Solving for \(M\):
\[ M = \frac{80}{10} = 8 \, \text{M} \]
Conclusion:
The molarity of the \(\text{KMnO}_4\) solution is \(8 \, \text{M}\).
$\mathrm{KMnO}_{4}$ acts as an oxidising agent in acidic medium. ' X ' is the difference between the oxidation states of Mn in reactant and product. ' Y ' is the number of ' d ' electrons present in the brown red precipitate formed at the end of the acetate ion test with neutral ferric chloride. The value of $\mathrm{X}+\mathrm{Y}$ is _______ .
Match List-I with List-II: List-I