In an acidic medium, the reaction between potassium permanganate (\(\text{KMnO}_4\)) and oxalic acid (\(\text{H}_2\text{C}_2\text{O}_4\)) can be represented as:
\[ 2 \text{KMnO}_4 + 5 \text{H}_2\text{C}_2\text{O}_4 + 6 \text{H}^+ \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2\text{O} \]
Using the Concept of Equivalents:
According to the principle of equivalents:
\[ \text{equivalents of KMnO}_4 = \text{equivalents of H}_2\text{C}_2\text{O}_4 \]
Calculate Equivalents for Each Solution:
For oxalic acid (\(\text{H}_2\text{C}_2\text{O}_4\)):
\[ \text{Molarity} \times \text{Volume} \times \text{n-factor} = 2 \times 20 \times 2 = 80 \, \text{meq} \]
where \(\text{n-factor} = 2\) for oxalic acid.
For \(\text{KMnO}_4\):
\[ M \times 2 \times 5 = 10M \, \text{meq} \]
where \(\text{n-factor} = 5\) for \(\text{KMnO}_4\).
Equating Equivalents:
\[ 10M = 80 \]
Solving for \(M\):
\[ M = \frac{80}{10} = 8 \, \text{M} \]
Conclusion:
The molarity of the \(\text{KMnO}_4\) solution is \(8 \, \text{M}\).
200 cc of $x \times 10^{-3}$ M potassium dichromate is required to oxidise 750 cc of 0.6 M Mohr's salt solution in acidic medium. Here x = ______ .

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.