To solve this, we need to calculate the entropy changes for both the free expansion and the isothermal expansion.
Step 1: Entropy Change for Free Expansion (\( \Delta S_1 \))
For free expansion, the process is irreversible, and since the gas expands into a vacuum, there is no heat exchange with the surroundings. Therefore, the entropy change \( \Delta S_1 \) for the gas during free expansion is given by: \[ \Delta S_1 = nR \ln \left( \frac{V_f}{V_i} \right), \] where \( V_f \) and \( V_i \) are the final and initial volumes of the gas, respectively, and \( n \) is the number of moles. Since the volume doubles, \( \frac{V_f}{V_i} = 2 \), and we get: \[ \Delta S_1 = nR \ln(2). \] Step 2: Entropy Change for Isothermal Expansion (\( \Delta S_2 \))
For the isothermal expansion, the process is reversible, and the gas is at a constant temperature. The entropy change \( \Delta S_2 \) for the gas during an isothermal expansion is given by: \[ \Delta S_2 = nR \ln \left( \frac{V_f}{V_i} \right), \] where \( V_f \) and \( V_i \) are the final and initial volumes of the gas, respectively. Since the volume also doubles in this case, \( \frac{V_f}{V_i} = 2 \), and we get: \[ \Delta S_2 = nR \ln(2). \] Step 3: Comparing the Two Entropy Changes.
We are asked to find the ratio \( \frac{\Delta S_1}{\Delta S_2} \). Since both entropy changes are equal: \[ \frac{\Delta S_1}{\Delta S_2} = \frac{nR \ln(2)}{nR \ln(2)} = 1. \] Thus, the value of \( \frac{\Delta S_1}{\Delta S_2} \) is \( 1 \).
“Why do they pull down and do away with crooked streets, I wonder, which are my delight, and hurt no man living? Every day the wealthier nations are pulling down one or another in their capitals and their great towns: they do not know why they do it; neither do I. It ought to be enough, surely, to drive the great broad ways which commerce needs and which are the life-channels of a modern city, without destroying all history and all the humanity in between: the islands of the past.”
(From Hilaire Belloc’s “The Crooked Streets”)
Based only on the information provided in the above passage, which one of the following statements is true?
As the police officer was found guilty of embezzlement, he was _________ dismissed from the service in accordance with the Service Rules. Select the most appropriate option to complete the above sentence.
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is: