1. Hamiltonian for the system:
The Hamiltonian for the system is given by:
\[
H = \frac{A \hbar^2}{2} (\vec{S}_1 + \vec{S}_2) \cdot \vec{S}_3
\]
where \( \vec{S}_1, \vec{S}_2, \vec{S}_3 \) are the spin operators for the three spin-\(\frac{1}{2}\) particles, and \( A \) is a constant. This Hamiltonian involves the interaction between the spin operators of particles 1, 2, and 3.
2. Total spin operators:
The total spin operator \( \vec{S}_{12} = \vec{S}_1 + \vec{S}_2 \) represents the combined spin of particles 1 and 2. Since both are spin-\(\frac{1}{2}\) particles, the possible total spin values are:
- \( S_{12} = 1 \) (triplet state)
- \( S_{12} = 0 \) (singlet state)
The total Hamiltonian can be rewritten using the identity:
\[
(\vec{S}_1 + \vec{S}_2) \cdot \vec{S}_3 = \frac{1}{2} \left[ \vec{S}_{\text{tot}}^2 - \vec{S}_{12}^2 - \vec{S}_3^2 \right],
\]
where \( \vec{S}_{\text{tot}} = \vec{S}_1 + \vec{S}_2 + \vec{S}_3 \).
3. Energy eigenvalues for different spin configurations:
Each spin-\(\frac{1}{2}\) has \( \vec{S}^2 = \frac{3}{4} \hbar^2 \).
The possible total spin states and corresponding eigenvalues are:
- For \( S_{12} = 1 \) and \( S_{\text{tot}} = \frac{3}{2} \):
\[
E = \frac{A \hbar^2}{2} \left( \frac{15}{4} - 2 - \frac{3}{4} \right) = \frac{A \hbar^2}{2}
\]
- For \( S_{12} = 1 \) and \( S_{\text{tot}} = \frac{1}{2} \):
\[
E = \frac{A \hbar^2}{2} \left( \frac{3}{4} - 2 - \frac{3}{4} \right) = -A \hbar^2
\]
- For \( S_{12} = 0 \), \( S_{\text{tot}} = \frac{1}{2} \):
\[
E = \frac{A \hbar^2}{2} \left( \frac{3}{4} - 0 - \frac{3}{4} \right) = 0
\]
4. Possible energy eigenvalues:
Removing \( \hbar^2 \) as a constant factor (for normalized units), the possible energy eigenvalues of the system are:
- \( 0 \)
- \( \frac{A}{2} \)
- \( -A \)
Therefore, the set of possible energy eigenvalues of the system is:
\[
\boxed{0, \frac{A}{2}, -A}
\]
which corresponds to option (A).