Step 1: Relationship between main scale and vernier scale Given that:
\[ n \, \text{MSD} = (n + 1) \, \text{VSD}. \]
From this:
\[ 1 \, \text{VSD} = \frac{n}{n + 1} \, \text{MSD}. \]
Step 2: Least count formula The least count (L.C.) of a vernier caliper is given by:
\[ \text{L.C.} = 1 \, \text{MSD} - 1 \, \text{VSD}. \]
Substitute \( 1 \, \text{VSD} \) from Step 1:
\[ \text{L.C.} = m - m \left( \frac{n}{n + 1} \right). \]
Simplify:
\[ \text{L.C.} = m \left[ 1 - \frac{n}{n + 1} \right]. \]
\[ \text{L.C.} = m \left( \frac{n + 1 - n}{n + 1} \right). \]
\[ \text{L.C.} = \frac{m}{n + 1}. \]
Final Answer: \( \frac{m}{n + 1} \).
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: