Step 1: Relationship between main scale and vernier scale Given that:
\[ n \, \text{MSD} = (n + 1) \, \text{VSD}. \]
From this:
\[ 1 \, \text{VSD} = \frac{n}{n + 1} \, \text{MSD}. \]
Step 2: Least count formula The least count (L.C.) of a vernier caliper is given by:
\[ \text{L.C.} = 1 \, \text{MSD} - 1 \, \text{VSD}. \]
Substitute \( 1 \, \text{VSD} \) from Step 1:
\[ \text{L.C.} = m - m \left( \frac{n}{n + 1} \right). \]
Simplify:
\[ \text{L.C.} = m \left[ 1 - \frac{n}{n + 1} \right]. \]
\[ \text{L.C.} = m \left( \frac{n + 1 - n}{n + 1} \right). \]
\[ \text{L.C.} = \frac{m}{n + 1}. \]
Final Answer: \( \frac{m}{n + 1} \).
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
The molar solubility(s) of zirconium phosphate with molecular formula \( \text{Zr}^{4+} \text{PO}_4^{3-} \) is given by relation: