To determine the value of \( x \), we start by understanding the concept of Faraday's laws of electrolysis. One Faraday corresponds to the charge of one mole of electrons, which is approximately 96485 Coulombs. Copper has a valency of 2, meaning that two moles of electrons are needed to discharge one mole of copper atoms at the cathode.
Let's calculate the gram atom of copper liberated by one Faraday. The molar mass of copper is approximately 63.5 grams per mole. For copper sulfate, the reaction can be represented as:
\[ \text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu} \]
Given:
Thus, 1 Faraday will liberate:
\(\frac{63.5}{2} = 31.75\) g of Cu
Converting grams to gram-atoms (since 1 gram-atom corresponds to 1 mole):
\(\frac{31.75}{63.5} = 0.5\) gram atom of Cu
The expression is given as \( x \times 10^{-1} \) gram atom, meaning:
\( x \times 10^{-1} = 0.5 \)
Solving for \( x \):
\( x = 0.5 \times 10 = 5 \)
This calculated value (\( x = 5 \)) .
\[ \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \]
$2 \, \text{Faraday} \rightarrow 1 \, \text{mol Cu}$
$1 \, \text{Faraday} \rightarrow 0.5 \, \text{mol Cu deposit}$
$0.5 \, \text{mol} = 0.5 \, \text{g atom} = 5 \times 10^{-1}$
\[ x = 5 \]


In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
