On the surface of polar stratospheric clouds, hydrolysis of chlorine nitrate as
\(ClNO_2+H_2O⟶HOCl(A)+HNO_3(B)\)
\(ClNO_2+HCl⟶Cl_2(C)+HNO_3(B)\)
Hence \(A, B\) and \(C\) are \(HOCl, HNO_3\) and \(Cl_2\), respectively.
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
X g of benzoic acid on reaction with aqueous \(NaHCO_3\) release \(CO_2\) that occupied 11.2 L volume at STP. X is ________ g.
The rate of a chemical reaction is defined as the change in concentration of any one of the reactants or products per unit time.
Consider the reaction A → B,
Rate of the reaction is given by,
Rate = −d[A]/ dt=+d[B]/ dt
Where, [A] → concentration of reactant A
[B] → concentration of product B
(-) A negative sign indicates a decrease in the concentration of A with time.
(+) A positive sign indicates an increase in the concentration of B with time.
There are certain factors that determine the rate of a reaction: