The locus of point \( P(x, y) \) equidistant from \( (3, 0) \) and \( (0, 4) \) is the perpendicular bisector.
Use distance formula:
\[
\sqrt{(x - 3)^2 + y^2} = \sqrt{x^2 + (y - 4)^2}
\Rightarrow (x - 3)^2 + y^2 = x^2 + (y - 4)^2
\Rightarrow x^2 - 6x + 9 + y^2 = x^2 + y^2 - 8y + 16
\Rightarrow -6x + 9 = -8y + 16 \Rightarrow 6x + 8y = 7
\]
Now find intersection with:
- Line 1: \( 4x = 3y \Rightarrow y = \frac{4}{3}x \)
- Line 2: \( x = y \)
Substitute into locus:
\[
6x + 8 \cdot \frac{4}{3}x = 7 \Rightarrow 6x + \frac{32}{3}x = 7
\Rightarrow \frac{50x}{3} = 7 \Rightarrow x = \frac{21}{50}
\Rightarrow y = \frac{28}{50}
\]
Point A: \( \left( \frac{21}{50}, \frac{28}{50} \right) \)
Point B (on \( x = y \)): Substitute into same equation:
\[
6x + 8x = 7 \Rightarrow 14x = 7 \Rightarrow x = \frac{1}{2}, y = \frac{1}{2}
\]
Now compute distance:
\[
AB = \sqrt{\left( \frac{21}{50} - \frac{1}{2} \right)^2 + \left( \frac{28}{50} - \frac{1}{2} \right)^2} = \sqrt{\left( \frac{-4}{50} \right)^2 + \left( \frac{3}{50} \right)^2} = \sqrt{\frac{25}{100}} = \frac{5}{10} = \frac{5}{2}
\]