Let \(r\) and \( h \) be the radius and height of the cylinder respectively.
Then,volume\((V)\)of the cylinder is given by,
\(V=\pi r^{2}h=100(given)\)
\(∴h=\frac{100}{\pi r^{2}}\)
Surface area\((S)\)of the cylinder is given by,
\(S=2\pi r^{2}+2\pi rh=2\pi r^{2}+\frac{200}{r}\)
\(∴\frac{dS}{dr}=4\pi r-\frac{200}{r^{2}},\frac{d^{2}S}{dr^{2}}=4\pi +\frac{400}{r^{3}}\)
\(\frac{dS}{dr}=0⇒4\pi r=\frac{200}{r^{2}}\)
\(⇒r^{3}=\frac{200}{4\pi}=\frac{50}{\pi}\)
\(⇒r=(\frac{50}{\pi})^{\frac{1}{3}}\)
Now,it is observed that when \(r=(\frac{50}{\pi})^{\frac{1}{3}},\frac{d^{2}S}{dr^{2}}>0.\)
By second derivative test,the surface area is the minimum when the radius of the
cylinder is\((\frac{50}{\pi })^{\frac{1}{3}}cm.\)
When\(r=(\frac{50}{\pi })^{\frac{1}{3}}\),\(h=\frac{100}{\pi(\frac{50}{\pi})^{\frac{1}{3}}}\)=\(\frac{2\times50}{(50\pi)\frac{2}{3}()1-\frac{2}{3}}\)\(=2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)
Hence,the required dimensions of the can which has the minimum surface area is given
by radius=\((\frac{50}{\pi})^{\frac{1}{3}} cm.\) and height=\(2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?