Let \(r\) and \( h \) be the radius and height of the cylinder respectively.
Then,volume\((V)\)of the cylinder is given by,
\(V=\pi r^{2}h=100(given)\)
\(∴h=\frac{100}{\pi r^{2}}\)
Surface area\((S)\)of the cylinder is given by,
\(S=2\pi r^{2}+2\pi rh=2\pi r^{2}+\frac{200}{r}\)
\(∴\frac{dS}{dr}=4\pi r-\frac{200}{r^{2}},\frac{d^{2}S}{dr^{2}}=4\pi +\frac{400}{r^{3}}\)
\(\frac{dS}{dr}=0⇒4\pi r=\frac{200}{r^{2}}\)
\(⇒r^{3}=\frac{200}{4\pi}=\frac{50}{\pi}\)
\(⇒r=(\frac{50}{\pi})^{\frac{1}{3}}\)
Now,it is observed that when \(r=(\frac{50}{\pi})^{\frac{1}{3}},\frac{d^{2}S}{dr^{2}}>0.\)
By second derivative test,the surface area is the minimum when the radius of the
cylinder is\((\frac{50}{\pi })^{\frac{1}{3}}cm.\)
When\(r=(\frac{50}{\pi })^{\frac{1}{3}}\),\(h=\frac{100}{\pi(\frac{50}{\pi})^{\frac{1}{3}}}\)=\(\frac{2\times50}{(50\pi)\frac{2}{3}()1-\frac{2}{3}}\)\(=2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)
Hence,the required dimensions of the can which has the minimum surface area is given
by radius=\((\frac{50}{\pi})^{\frac{1}{3}} cm.\) and height=\(2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is