Let \(r\) and \( h \) be the radius and height of the cylinder respectively.
Then,volume\((V)\)of the cylinder is given by,
\(V=\pi r^{2}h=100(given)\)
\(∴h=\frac{100}{\pi r^{2}}\)
Surface area\((S)\)of the cylinder is given by,
\(S=2\pi r^{2}+2\pi rh=2\pi r^{2}+\frac{200}{r}\)
\(∴\frac{dS}{dr}=4\pi r-\frac{200}{r^{2}},\frac{d^{2}S}{dr^{2}}=4\pi +\frac{400}{r^{3}}\)
\(\frac{dS}{dr}=0⇒4\pi r=\frac{200}{r^{2}}\)
\(⇒r^{3}=\frac{200}{4\pi}=\frac{50}{\pi}\)
\(⇒r=(\frac{50}{\pi})^{\frac{1}{3}}\)
Now,it is observed that when \(r=(\frac{50}{\pi})^{\frac{1}{3}},\frac{d^{2}S}{dr^{2}}>0.\)
By second derivative test,the surface area is the minimum when the radius of the
cylinder is\((\frac{50}{\pi })^{\frac{1}{3}}cm.\)
When\(r=(\frac{50}{\pi })^{\frac{1}{3}}\),\(h=\frac{100}{\pi(\frac{50}{\pi})^{\frac{1}{3}}}\)=\(\frac{2\times50}{(50\pi)\frac{2}{3}()1-\frac{2}{3}}\)\(=2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)
Hence,the required dimensions of the can which has the minimum surface area is given
by radius=\((\frac{50}{\pi})^{\frac{1}{3}} cm.\) and height=\(2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)
Observe the given sequence of nitrogenous bases on a DNA fragment and answer the following questions: 
(a) Name the restriction enzyme which can recognise the DNA sequence.
(b) Write the sequence after restriction enzyme cut the palindrome.
(c) Why are the ends generated after digestion called as ‘Sticky Ends’?