Let \(r\) and \( h \) be the radius and height of the cylinder respectively.
Then,volume\((V)\)of the cylinder is given by,
\(V=\pi r^{2}h=100(given)\)
\(∴h=\frac{100}{\pi r^{2}}\)
Surface area\((S)\)of the cylinder is given by,
\(S=2\pi r^{2}+2\pi rh=2\pi r^{2}+\frac{200}{r}\)
\(∴\frac{dS}{dr}=4\pi r-\frac{200}{r^{2}},\frac{d^{2}S}{dr^{2}}=4\pi +\frac{400}{r^{3}}\)
\(\frac{dS}{dr}=0⇒4\pi r=\frac{200}{r^{2}}\)
\(⇒r^{3}=\frac{200}{4\pi}=\frac{50}{\pi}\)
\(⇒r=(\frac{50}{\pi})^{\frac{1}{3}}\)
Now,it is observed that when \(r=(\frac{50}{\pi})^{\frac{1}{3}},\frac{d^{2}S}{dr^{2}}>0.\)
By second derivative test,the surface area is the minimum when the radius of the
cylinder is\((\frac{50}{\pi })^{\frac{1}{3}}cm.\)
When\(r=(\frac{50}{\pi })^{\frac{1}{3}}\),\(h=\frac{100}{\pi(\frac{50}{\pi})^{\frac{1}{3}}}\)=\(\frac{2\times50}{(50\pi)\frac{2}{3}()1-\frac{2}{3}}\)\(=2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)
Hence,the required dimensions of the can which has the minimum surface area is given
by radius=\((\frac{50}{\pi})^{\frac{1}{3}} cm.\) and height=\(2(\frac{50}{\pi})^{\frac{1}{3}} cm.\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.