Obtain the differential equation of linear simple harmonic motion.
For simple harmonic motion (SHM), the restoring force is proportional to the displacement \( x \) from the equilibrium position:
\[ F = -kx \] By Newton's second law, \( F = ma \), where \( a \) is the acceleration. Therefore, we have:
\[ ma = -kx \] Since acceleration \( a = \frac{d^2x}{dt^2} \), the equation becomes:
\[ m \frac{d^2x}{dt^2} = -kx \] This is the differential equation of SHM, which can be written as:
\[ \frac{d^2x}{dt^2} + \frac{k}{m} x = 0 \]
Distinguish between an ammeter and a voltmeter. (Two points each).
The displacement of a particle performing simple harmonic motion is \( \frac{1}{3} \) of its amplitude. What fraction of total energy is its kinetic energy?
The slope of the tangent to the curve \( x = \sin\theta \) and \( y = \cos 2\theta \) at \( \theta = \frac{\pi}{6} \) is ___________.
Solve the following L.P.P. by graphical method:
Maximize:
\[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]