For \([V(\text{H}_2\text{O})_6]^{3+}:\)
Vanadium (V) has an atomic number of 23, with an electronic configuration of \([ \text{Ar} ] 3d^3 4s^2\). \(\text{V}^{3+}\) configuration: \([ \text{Ar} ] 3d^2\). Number of unpaired \(d\)-electrons: 2 (even number).
For \([Cr(\text{H}_2\text{O})_6]^{2+}:\)
Chromium (Cr) has an atomic number of 24, with an electronic configuration of \([ \text{Ar} ] 3d^5 4s^1\). \(\text{Cr}^{2+}\) configuration: \([ \text{Ar} ] 3d^4\). Number of unpaired \(d\)-electrons: 4 (even number).
For \([Fe(\text{H}_2\text{O})_6]^{3+}:\)
Iron (Fe) has an atomic number of 26, with an electronic configuration of \([ \text{Ar} ] 3d^6 4s^2\). \(\text{Fe}^{3+}\) configuration: \([ \text{Ar} ] 3d^5\). Number of unpaired \(d\)-electrons: 5 (odd number).
For \([Ni(\text{H}_2\text{O})_6]^{3+}:\)
Nickel (Ni) has an atomic number of 28, with an electronic configuration of \([ \text{Ar} ] 3d^8 4s^2\). \(\text{Ni}^{3+}\) configuration: \([ \text{Ar} ] 3d^7\). Number of unpaired \(d\)-electrons: 3 (odd number).
For \([Cu(\text{H}_2\text{O})_6]^{2+}:\)
Copper (Cu) has an atomic number of 29, with an electronic configuration of \([ \text{Ar} ] 3d^{10} 4s^1\). \(\text{Cu}^{2+}\) configuration: \([ \text{Ar} ] 3d^9\). Number of unpaired \(d\)-electrons: 1 (odd number).
From the analysis above, only \([V(\text{H}_2\text{O})_6]^{3+}\) and \([Cr(\text{H}_2\text{O})_6]^{2+}\) have an even number of unpaired \(d\)-electrons.
The number of complexes with an even number of unpaired \(d\)-electrons is 2, corresponding to Option (1).
Identify the correct orders against the property mentioned:
A. H$_2$O $>$ NH$_3$ $>$ CHCl$_3$ - dipole moment
B. XeF$_4$ $>$ XeO$_3$ $>$ XeF$_2$ - number of lone pairs on central atom
C. O–H $>$ C–H $>$ N–O - bond length
D. N$_2$>O$_2$>H$_2$ - bond enthalpy
Choose the correct answer from the options given below:
What is the empirical formula of a compound containing 40% sulfur and 60% oxygen by mass?
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]