For \([V(\text{H}_2\text{O})_6]^{3+}:\)
Vanadium (V) has an atomic number of 23, with an electronic configuration of \([ \text{Ar} ] 3d^3 4s^2\). \(\text{V}^{3+}\) configuration: \([ \text{Ar} ] 3d^2\). Number of unpaired \(d\)-electrons: 2 (even number).
For \([Cr(\text{H}_2\text{O})_6]^{2+}:\)
Chromium (Cr) has an atomic number of 24, with an electronic configuration of \([ \text{Ar} ] 3d^5 4s^1\). \(\text{Cr}^{2+}\) configuration: \([ \text{Ar} ] 3d^4\). Number of unpaired \(d\)-electrons: 4 (even number).
For \([Fe(\text{H}_2\text{O})_6]^{3+}:\)
Iron (Fe) has an atomic number of 26, with an electronic configuration of \([ \text{Ar} ] 3d^6 4s^2\). \(\text{Fe}^{3+}\) configuration: \([ \text{Ar} ] 3d^5\). Number of unpaired \(d\)-electrons: 5 (odd number).
For \([Ni(\text{H}_2\text{O})_6]^{3+}:\)
Nickel (Ni) has an atomic number of 28, with an electronic configuration of \([ \text{Ar} ] 3d^8 4s^2\). \(\text{Ni}^{3+}\) configuration: \([ \text{Ar} ] 3d^7\). Number of unpaired \(d\)-electrons: 3 (odd number).
For \([Cu(\text{H}_2\text{O})_6]^{2+}:\)
Copper (Cu) has an atomic number of 29, with an electronic configuration of \([ \text{Ar} ] 3d^{10} 4s^1\). \(\text{Cu}^{2+}\) configuration: \([ \text{Ar} ] 3d^9\). Number of unpaired \(d\)-electrons: 1 (odd number).
From the analysis above, only \([V(\text{H}_2\text{O})_6]^{3+}\) and \([Cr(\text{H}_2\text{O})_6]^{2+}\) have an even number of unpaired \(d\)-electrons.
The number of complexes with an even number of unpaired \(d\)-electrons is 2, corresponding to Option (1).
Resonance in X$_2$Y can be represented as 
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
Given below are two statements :
Statement I : Wet cotton clothes made of cellulose based carbohydrate takes comparatively longer time to get dried than wet nylon polymer based clothes.
Statement II : Intermolecular hydrogen bonding with water molecule is more in nylon-based clothes than in the case of cotton clothes.
In the light of the above statements, choose the Correct answer from the options given below
Match the LIST-I with LIST-II
| LIST-I | LIST-II |
| A. PF5 | I. dsp2 |
| B. SF6 | II. sp3d |
| C. Ni(CO)4 | III. sp3d2 |
| D. [PtCl4]2- | IV. sp3 |
Choose the correct answer from the options given below:
Given below are two statements:
Statement I : The N-N single bond is weaker and longer than that of P-P single bond
Statement II : Compounds of group 15 elements in +3 oxidation states readily undergo disproportionation reactions.
In the light of above statements, choose the correct answer from the options given below

Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: