Let $ S $ be the set of all seven-digit numbers that can be formed using the digits 0, 1 and 2. For example, 2210222 is in $ S $, but 0210222 is NOT in $ S $.
Then the number of elements $ x $ in $ S $ such that at least one of the digits 0 and 1 appears exactly twice in $ x $, is equal to __________.
Match List-I with List-II
| List-I | List-II |
|---|---|
| (A) \(^{8}P_{3} - ^{10}C_{3}\) | (I) 6 |
| (B) \(^{8}P_{5}\) | (II) 21 |
| (C) \(^{n}P_{4} = 360,\) then find \(n\). | (III) 216 |
| (D) \(^{n}C_{2} = 210,\) find \(n\). | (IV) 6720 |
Choose the correct answer from the options given below: